С. Берлов


Задача №1. В треугольнике $ABC$ стороны $AB$ и $BC$ равны. Точка $D$ внутри треугольника такова, что угол $ADC$ вдвое больше угла $ABC$. Докажите, что удвоенное расстояние от точки $B$ до прямой, делящей пополам углы, смежные с углом $ADC$, равно $AD+DC$. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №2. В выпуклом четырехугольнике $ABCD$ выполнены соотношения $AB = BD$; $\angle ABD = \angle DBC$. На диагонали $BD$ нашлась точка $K$ такая, что $BK = BC$. Докажите, что $\angle KAD = \angle KCD$. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №3.  В Швамбрании некоторые города связаны двусторонними беспосадочными авиарейсами. Рейсы разделены между тремя авиакомпаниями, причём если какая-то авиакомпания обслуживает линию между городами А и Б, то самолёты других компаний между этими городами не летают. Известно, что из каждого города летают самолёты всех трёх компаний. Докажите, что можно, вылетев из некоторого города, вернуться в него, воспользовавшись по пути рейсами всех трёх компаний и не побывав ни в одном из промежуточных городов дважды. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №4.  В выпуклом четырехугольнике $ABCD$ углы $B$ и $D$ равны, $CD = 4BC$, а биссектриса угла $A$ проходит через середину стороны $CD$. Чему может быть равно отношение $AD/AB$? ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №5.  Бизнесмен Борис Михайлович решил устроить с трактористом Васей гонки по шоссе. Поскольку его «Лексус» едет вдесятеро быстрее Васиного трактора, он дал Васе фору и выехал через час после Васи. После того, как Васин трактор проехал ровно половину запланированной трассы, у него отвалилась рессора, поэтому оставшуюся часть пути Вася проехал вдвое медленнее, чем первую. В результате встречи с Васиной рессорой Борису Михайловичу пришлось заехать в оказавшийся рядом сервис на 4 часа, после чего он продолжил путь вдвое медленнее, чем раньше. Докажите, что в результате он отстал от Васи не менее, чем на час. ( С. Берлов )
комментарий/решение(2) олимпиада
Задача №6.  В треугольнике $ABC$ точки $M$ и $N$ — середины сторон $AC$ и $AB$ соответственно. На медиане $BM$ выбрана точка $P$, не лежащая на $CN$. Оказалось, что $PC = 2PN$. Докажите, что $AP = BC$. ( С. Берлов )
комментарий/решение(3) олимпиада
Задача №7. Докажите, что для любого натурального числа $n > 1$ найдутся такие натуральные числа $a, b, c, d$, что $a+b = c+d = ab - cd = 4n$. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №8.  Внутри выпуклого четырехугольника $ABCD$, в котором $AB = CD$, выбрана точка $P$ таким образом, что сумма углов $PBA$ и $PCD$ равна 180 градусам. Докажите, что $PB+PC < AD$. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №9.  Назовем четырехзначное число $x$ забавным, если каждую его цифру можно увеличить или уменьшить на 1 (при этом цифру 9 можно только уменьшать, а 0 — только увеличивать) так, чтобы в результате получилось число, делящееся на $x$.
а) Найдите два забавных числа.
б) Найдите три забавных числа.
в) Существует ли четыре забавных числа? ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №10.  Собственным делителем числа называется любой его натуральный делитель, кроме 1 и самого числа. С составным натуральным числом $a$ разрешается проделывать следующие операции: разделить на наименьший собственный делитель или прибавить любое натуральное число, делящееся на его наибольший собственный делитель. Если число получилось простым, то с ним ничего нельзя делать. Верно ли, что с помощью таких операций из любого составного числа можно получить число 2011? ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №11.  1000 различных положительных чисел записаны в ряд в порядке возрастания. Вася разбил эти числа на 500 пар соседних и нашел суммы чисел во всех парах. Петя разбил эти же числа на 500 пар таким образом, что между числами в каждой паре стоит ровно три других числа, и тоже нашел суммы чисел во всех парах. Докажите, что произведение сумм, найденных Петей, больше, чем произведение сумм, найденных Васей. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №12.  Существуют ли два многоугольника (не обязательно выпуклых), обладающих следующим свойством: прикладывая их друг к другу (без наложения), можно получить многоугольники с любым числом сторон от 3 до 100 включительно? ( И. Богданов, С. Волчёнков, С. Берлов )
комментарий/решение(1) олимпиада
Задача №13.  Углы треугольника ABC удовлетворяют условию $2\angle A+\angle B = \angle C$. Внутри этого треугольника на биссектрисе угла $A$ выбрана точка $K$ такая, что $BK = BC$. Докажите, что $\angle KBC = 2\angle KBA$. ( С. Берлов )
комментарий/решение(2) олимпиада
Задача №14.  200 человек стоят по кругу. Каждый из них либо лжец, либо конформист. Лжец всегда лжет. Конформист, рядом с которым стоят два конформиста, всегда говорит правду. Конформист, рядом с которым стоит хотя бы один лжец, может как говорить правду, так и лгать. 100 из стоящих сказали: «Я — лжец», 100 других сказали: «Я — конформист». Найдите наибольшее возможное число конформистов среди этих 200 человек. ( Р. Женодаров, С. Берлов )
комментарий/решение(1) олимпиада
Задача №15.  Из шахматной доски размером $13 \times 13$ вырезали две противоположные угловые клетки. На оставшейся части доски отметили несколько клеток. Докажите, что на отмеченные клетки можно поставить шахматных королей так, чтобы всего королей было не больше 47, и они били все пустые отмеченные клетки. Напомним, что шахматный король бьет все клетки, соседние с ним по вертикали, горизонтали и диагонали. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №16.  Диагонали выпуклого четырёхугольника $ABCD$ равны и пересекаются в точке $O$. Точка $P$ внутри треугольника $AOD $ такова, что $CD \parallel BP $ и $AB \parallel CP$. Докажите, что точка $P$ лежит на биссектрисе угла $AOD$. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №17.  В гандболе за победу дают 2 очка, за ничью — 1 очко, за поражение — 0 очков.14 гандбольных команд провели турнир, где каждая команда с каждой сыграла по одному разу. Оказалось, что никакие две команды не набрали поровну очков. Могло ли случиться, что каждая из команд, занявших первые три места, проиграла каждой из команд, занявших последние три места? ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №18.  В выпуклом четырёхугольнике $ABCD$, в котором $AB = CD$, на сторонах $AB$ и $CD$ выбраны точки $K$ и $M$ соответственно. Оказалось, что $AM = KC$, $BM = KD$. Докажите, что угол между прямыми $AB$ и $KM$ равен углу между прямыми $KM$ и $CD$. ( С. Берлов )
комментарий/решение(2) олимпиада
Задача №19.  На доске в строчку написано $n$ подряд идущих натуральных чисел в порядке возрастания. Под каждым из этих чисел написан его делитель, меньший этого числа и больший 1. Оказалось, что эти делители тоже образуют строчку подряд идущих натуральных чисел в порядке возрастания. Докажите, что каждое из исходных чисел больше, чем $\frac{{{n}^{k}}}{{{p}_{1}}{{p}_{2}}\ldots {{p}_{k}}}$, где $p_1$, $p_2$, $\dots $, $p_k$ — все простые числа, меньшие $n$. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №20.  На стороне $AC$ треугольника $ABC$ выбрана точка $D$ такая, что $BD = AC$. Медиана $AM$ этого треугольника пересекает отрезок $BD$ в точке $K$. Оказалось, что $DK = DC$. Докажите, что $AM+KM = AB$. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №21.  Дан выпуклый пятиугольник $ABCDE$, причём прямая $BE$ параллельна прямой $CD$ и отрезок $BE$ короче отрезка $CD$. Внутри пятиугольника выбраны точки $F$ и $G$ таким образом, что $ABCF$ и $AGDE$ — параллелограммы. Докажите, что $CD = BE + FG$. ( С. Берлов, К. Кноп )
комментарий/решение(1) олимпиада
Задача №22.  Дано 2014 попарно различных натуральных чисел таких, что произведение любых двух из них делится на сумму этих двух чисел. Докажите, что ни одно из данных чисел не может быть равно произведению шести попарно различных простых чисел. ( И. Рубанов, С. Берлов, В. Сендеров )
комментарий/решение(1) олимпиада
Задача №23.  Назовём натуральное число $\textit{гористым}$, если в его записи есть не стоящая с краю цифра (называемая $\textit{вершиной}$), которая больше всех остальных, а все остальные цифры ненулевые и сначала нестрого возрастают (то есть каждая следующая цифра больше предыдущей или равна ей) до вершины, а потом нестрого убывают (то есть каждая следующая цифра меньше предыдущей или равна ей). Например, число 12243 — гористое, а числа 3456 и 1312 — нет. Докажите, что сумма всех стозначных гористых чисел — составное число. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №24.  Диагональ выпуклого 101-угольника будем называть главной, если по одну сторону от неё лежит 50, а по другую — 49 вершин. Выбрано несколько главных диагоналей, не имеющих общих концов. Докажите, что сумма длин этих диагоналей меньше суммы длин остальных главных диагоналей. ( И. Богданов, С. Берлов )
комментарий/решение(1) олимпиада
Задача №25.  Серединные перпендикуляры к сторонам $AB$ и $BC$ выпуклого четырёхугольника $ABCD$ пересекают стороны $CD$ и $DA$ в точках $P$ и $Q$ соответственно. Оказалось, что $\angle APB = \angle BQC$. Внутри четырёхугольника выбрана точка $X$ такая, что $QX \parallel AB$ и $PX \parallel BC$. Докажите, что прямая $BX$ делит диагональ $AC$ пополам. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №26.  На столе лежит палочка длиной 10 см. Петя ломает её на две части и кладёт обе получившиеся палочки на стол. С одной из лежащих на столе палочек Вася проделывает ту же операцию, потом то же делает Петя и т.д., по очереди. Петя хочет, чтобы после 18 разломов все получившиеся палочки были короче 1 см. Вася хочет помешать Пете. Кто из них имеет возможность добиться своей цели независимо от действий соперника? ( И. Рубанов, С. Берлов )
комментарий/решение(1) олимпиада
Задача №27. На шахматной доске размером $20\times20$ расставлены 220 коней, которые бьют все свободные клетки. Докажите, что можно убрать 20 коней таким образом, чтобы оставшиеся кони били все свободные клетки. Напомним, что конь бьёт буквой «Г» (см. рисунок).

( С. Берлов )
комментарий/решение(1) олимпиада
Задача №28.  По кругу написаны 2015 положительных чисел. Сумма любых двух рядом стоящих чисел больше суммы обратных к двум следующим за ними по часовой стрелке. Докажите, что произведение всех этих чисел больше 1. ( С. Берлов, А. Голованов )
комментарий/решение(1) олимпиада
Задача №29. Натуральное число называется совершенным, если оно вдвое меньше суммы всех своих натуральных делителей: например, совершенным является число 6, так как $2\cdot 6 = 1+2+3+6$. Может ли сумма всех попарных произведений натуральных делителей совершенного числа $n$ делиться на $n^2$? ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №30.  $CK$ — биссектриса треугольника $ABC$. На сторонах $BC$ и $AC$ выбраны точки $L$ и $T$ соответственно такие, что $CT = BL$ и $TL = BK$. Докажите, что треугольник $LTC$ подобен исходному. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №31. В одной деревне живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Путешественник каждому жителю деревни задал два вопроса: «Сколько в деревне рыцарей?» и «На сколько отличаются количества рыцарей и лжецов?». Путешественник знает, что в деревне есть хотя бы один рыцарь. Всегда ли по полученным ответам путешественник сможет узнать, кто из жителей деревни рыцарь, а кто — лжец? ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №32.  Даны $2n$-значное натуральное число $a$ и натуральное число $k$. Числа $a$ и $ka$ записали на ленте и каждую из двух записей разрезали на двузначные числа, начиная с последних цифр (при этом числа $00$, $01$, $\ldots$, $09$ здесь тоже считаются двузначными; если в числе $ka$ оказалось нечетное количество цифр, к нему спереди приписали $0$). Оказалось, что у числа $a$ полученные двузначные числа строго убывают справа налево (от младших разрядов числа $a$ к старшим), а у числа $ka$ — строго возрастают. Докажите, что $k \geq n$. ( С. Берлов, О. Нечаева )
комментарий/решение(2) олимпиада
Задача №33.  Решите в натуральных числах уравнение $(a^2,b^2)+(a,bc)+(b,ac)+(c,ab)=199.$ (Здесь $(x,y)$ — наибольший общий делитель). ( С. Берлов )
комментарий/решение олимпиада
Задача №34.  В квадрате $n \times n$ ($n > 2$) стоят ненулевые числа. Известно, что каждое число ровно в $k$ раз меньше, чем сумма всех чисел, стоящих с ним в одном "кресте" (т.е.\ в остальных $2n-2$ клетках той же строки и того же столбца) При каких $k$ такое возможно? ( С. Берлов, А. Храбров, Д. Ростовский )
комментарий/решение олимпиада
Задача №35.  В выпуклом четырехугольнике $ABCD$ лучи $DA$ и $CB$ пересекаются в точке $Q$, а лучи $BA$ и $CD$ — в точке $P$. Оказалось, что $\angle AQB=\angle APD$. Биссектриса угла $\angle AQB$ пересекает стороны $AB$ и $CD$ четырехугольника в точках $X$ и $Y$ соответственно, а биссектриса $\angle APD$ пересекает стороны $AD$ и $BC$ в точках $Z$ и $T$ соответственно. Описанные окружности треугольников $ZQT$ и $XPY$ пересекаются в точке $K$ внутри четырехугольника. Докажите, что $K$ лежит на диагонали $AC$. ( С. Берлов )
комментарий/решение олимпиада
Задача №36.  Расстановку фишек в клетках квадрата $n\times n$ назовем редкой, если в любом квадрате $2\times 2$ стоит не более 3 фишек. Сергей поставил в некоторые клетки доски по одной фишке так, что получилась редкая расстановка. Он заметил, однако, что если переставить любую фишку на любую свободную клетку, то перестановка перестанет быть редкой. При каких $n$ это возможно? ( С. Берлов )
комментарий/решение олимпиада
Задача №37.  Дано натуральное число $n$. Известно, что существуют такие 2010 последовательных натуральных чисел, что ни одно из них не делится на $n$, но их произведение кратно $n$. Докажите, что существуют такие 2004 последовательных натуральных чисел, что ни одно из них не делится на $n$, но их произведение кратно $n$. ( С. Берлов )
комментарий/решение олимпиада
Задача №38.  Даны два натуральных числа $a < b$. Докажите, что из любых $b$ последовательных натуральных чисел можно выбрать два числа, произведение которых делится на $ab$. ( С. Берлов )
комментарий/решение олимпиада
Задача №39.  Существует ли такое натуральное число, состоящее из нечётных цифр, причём цифр 1, 3, 5, 7, 9 в нём поровну, которое делится на любое 20-значное число, получаемое из него вычёркиванием цифр (ни вычеркиваемые, ни оставшиеся цифры не обязаны стоять подряд)? ( С. Берлов )
комментарий/решение олимпиада
Задача №40.  Некоторое натуральное число $a$ разделили с остатком на числа 1, 2, 3, $\ldots$, 1000. Могло ли так случиться, что среди остатков ровно по 10 раз встретятся числа 0, 1, 2, 3, $\ldots$, 99? ( С. Берлов )
комментарий/решение олимпиада
Задача №41.  В выпуклом четырёхугольнике $ABCD$ углы $A$ и $C$ равны $100^\circ$. На сторонах $AB$ и $BC$ выбраны точки $X$ и $Y$ соответственно так, что $AX = CY$. Оказалось, что прямая $YD$ параллельна биссектрисе угла $ABC$. Найдите угол $AXY$. ( С. Берлов, А. Кузнецов )
комментарий/решение олимпиада
Задача №42.  В выпуклом четырёхугольнике $ABCD$ биссектриса угла $B$ проходит через середину стороны $AD$, а $\angle C = \angle A+\angle D$. Найдите угол $ACD$. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №43.  Имеется клетчатая доска размером $2n \times 2n$. Петя поставил на неё ${(n+1)^2}$ фишек. Кот может одним взмахом лапы смахнуть на пол любую одну фишку или две фишки, стоящие в соседних по стороне или углу клетках. За какое наименьшее количество взмахов кот заведомо сможет смахнуть на пол все поставленные Петей фишки? ( С. Берлов, Н. Власова )
комментарий/решение(1) олимпиада
Задача №44.  В треугольнике $ABC$ проведена медиана $BD$. Биссектрисы углов $ABD$ и $ACB$ перпендикулярны. Найдите наибольшее возможное значение угла $BAC$. ( С. Берлов )
комментарий/решение олимпиада
Задача №45.  Дан прямоугольник $ABCD$. На луче $DC$ отложен отрезок $DK$, равный $BD$. Точка $M$ — середина отрезка $BK$. Докажите, что $AM$ — биссектриса угла $BAC$. ( С. Берлов )
комментарий/решение олимпиада
Задача №46.  Вневписанная окружность треугольника $ABC$ касается его стороны $AB$ в точке $P$, а продолжений сторон $AC$ и $BC$ — в точках $Q$ и $R$ соответственно. Докажите, что если середина $PQ$ лежит на описанной окружности треугольника $ABC$, то и середина $PR$ тоже лежит на этой описанной окружности. ( С. Берлов )
комментарий/решение олимпиада
Задача №47.  Дано натуральное число $n$. Известно, что существуют такие пять последовательных натуральных чисел, что ни одно из них не делится на $n$, но их произведение кратно $n$. Докажите, что существуют такие четыре последовательных натуральных числа, что ни одно из них не делится на $n$, но их произведение кратно $n$. ( С. Берлов )
комментарий/решение олимпиада
Задача №48.  Окружность, концентрическая со вписанной окружностью треугольника $ABC$, пересекает стороны треугольника в шести точках, образующих выпуклый шестиугольник $A_1A_2B_1B_2C_1C_2$ (точки $A_1$ и $A_2$ лежат на стороне $BC$, $B_1$ и $B_2$ — на стороне $AC$, $C_1$ и $C_2$ — на стороне $AB$). Докажите, что если прямая $A_1B_1$ параллельна биссектрисе угла $B$, то прямая $A_2C_2$ параллельна биссектрисе угла $C$. ( С. Берлов )
комментарий/решение олимпиада
Задача №49.  В клетках таблицы $11 \times 11$ расставлены все натуральные числа от 1 до 121. Дима посчитал произведение чисел в каждой строке, а Саша — произведение чисел в каждом столбце. Могли ли они получить одинаковые наборы из 11 чисел? ( С. Берлов )
комментарий/решение олимпиада
Задача №50.  Точка $I$ — центр вписанной окружности треугольника $ABC$. Окружность, проходящая через вершины $B$ и $C$, пересекает отрезки $BI$ и $CI$ в точках $P$ и $Q$ соответственно. Известно, что $BP\cdot CQ=PI\cdot QI$. Докажите, что описанная окружность треугольника $PQI$ касается описанной окружности исходного треугольника. ( С. Берлов )
комментарий/решение олимпиада
Задача №51.  Организаторы математического конгресса обнаружили, что, если любого из участников поселить в одноместный номер, то всех остальных можно будет расселить по двухместным номерам, в каждом из которых обитатели будут знакомы друг с другом.
Докажите, что любой участник может организовать круглый стол по теории графов, в котором, кроме него, будет участвовать еще четное число людей, и каждый участник будет знаком с обоими своими соседями по столу. ( С. Берлов, С. Иванов )
комментарий/решение олимпиада
Задача №52.  Точка $H$ — ортоцентр остроугольного треугольника $ABC$. На стороне $BC$ выбрана точка $D$. Точка $P$ построена таким образом, что $ADPH$ — параллелограмм. Докажите, что $\angle BPC > \angle BAC$. ( С. Берлов )
комментарий/решение олимпиада
Задача №53.  Саша и Дима играют в игру на доске $100\times 100$. В начале игры Саша выбирает 50 клеток и ставит на них по одному королю. После этого Дима выбирает одну из свободных клеток и выставляет на нее ладью. Далее игроки ходят по очереди (начинает Саша). Каждым своим ходом Саша перемещает каждого из королей на соседнюю по стороне или углу клетку, а Дима своим ходом передвигает ладью на любое количество клеток по горизонтали или вертикали. При этом ладья не может "перепрыгивать" через короля и "бить" короля. Сможет ли Саша действовать так, чтобы рано или поздно побить ладью одним из королей? ( С. Берлов )
комментарий/решение олимпиада
Задача №54.  Расстановку фишек в клетках квадрата $n\times n$ назовем редкой, если в любом квадрате $2\times 2$ стоит не более 3 фишек. Сергей поставил в некоторые клетки доски по одной фишке так, что получилась редкая расстановка. Он заметил, однако, что если переставить любую фишку на любую свободную клетку, то перестановка перестанет быть редкой. При каких $n$ это возможно? ( С. Берлов )
комментарий/решение олимпиада
Задача №55.  Точка $M$ — середина основания $BC$ трапеции $ABCD$. На основании $AD$ выбрана точка $P$. Прямая $PM$ пересекает прямую $CD$ в точке $Q$, причем $C$ лежит между $Q$ и $D$. Перпендикуляр к основаниям, проведенный через точку $P$, пересекает прямую $BQ$ в точке $K$. Докажите, что $\angle QBC = \angle KDA$. ( С. Берлов )
комментарий/решение олимпиада
Задача №56.  100 клеток бесконечной клетчатой плоскости образуют квадрат $10\times 10$. Единичные отрезки, являющиеся сторонами этих клеток, покрашены в несколько цветов. Оказалось, что на границе любого квадрата со сторонами, идущими по линиям сетки, присутствуют отрезки не более, чем двух цветов. (Рассматриваемые квадраты не обязаны содержаться в исходном квадрате $10\times 10$.) Какое наибольшее количество цветов может присутствовать в раскраске? ( С. Берлов )
комментарий/решение олимпиада
Задача №57.  На бесконечной клетчатой плоскости стоит несколько шахматных коней. При этом никакая клетка не находится под боем более, чем одного коня. (В частности, клетка, на которой стоит конь, может биться другим конем, но не двумя сразу). Саша обвел контур прямоугольника $14\times 16$. Какое наибольшее количество коней могло попасть в этот прямоугольник? ( С. Берлов )
комментарий/решение олимпиада
Задача №58.  Из картонного клетчатого прямоугольника $8\times 7$ вырезан уголок, состоящий из всех клеток первой строки и первого столбца (всего в нем $14$ клеток). Клетки бесконечной клетчатой плоскости покрашены в $k$ цветов так, что при любом положении картонного уголка на этой плоскости (с учетом поворотов и переворотов) все покрытые им клетки имеют разный цвет. При каком наименьшем $k$ это возможно? ( С. Берлов )
комментарий/решение олимпиада
Задача №59.  Организаторы математического конгресса обнаружили, что, если любого из участников поселить в одноместный номер, то всех остальных можно будет расселить по двухместным номерам, в каждом из которых обитатели будут знакомы друг с другом. Докажите, что любой участник может организовать круглый стол по теории графов, в котором, кроме него, будет участвовать еще четное число людей, и каждый участник будет знаком с обоими своими соседями по столу. ( С. Берлов, С. Иванов )
комментарий/решение олимпиада
Задача №60.  Точки $X$ и $Y$ — середины сторон $AB$ и $AC$ треугольника $ABC$, $I$ — центр его вписанной окружности, $K$ — точка касания вписанной окружности со стороной $BC$. Биссектриса внешнего угла при вершине $B$ пересекает прямую $XY$ в точке $P$, а биссектриса внешнего угла при вершине $C$ пересекает $XY$ в точке $Q$. Докажите, что площадь четырехугольника $PKQI$ равна половине площади исходного треугольника. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №61.  В треугольнике $ABC$ проведена медиана $BD$. Биссектрисы углов $ABD$ и $ACB$ перпендикулярны. Найдите наибольшее возможное значение угла $BAC$. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №62.  На футбольном поле тренировалось $n$ футболистов — нападающих и вратарей. Всего на тренировке было забито $k$ голов. Докажите, что после тренировки Фабио Капелло может так раздать номера от 1 до $n$ игрокам, что для любого гола разность между номерами нападающего и вратаря была не менее $n-k$. ( С. Берлов )
комментарий/решение олимпиада
Задача №63.  Точки $X$ и $Y$ внутри ромба $ABCD$ таковы, что точка $Y$ лежит внутри выпуклого четырёхугольника $BXDC$ и $2\angle XBY=2\angle XDY=\angle ABC$. Докажите, что прямые $AX$ и $CY$ параллельны. ( С. Берлов )
комментарий/решение олимпиада
Задача №64.  Внутри треугольника $ABC$ выбрана точка $P$ таким образом, что $\angle PAB=\angle PCB={1\over 4}(\angle A+\angle C)$. $BL$ — биссектриса этого треугольника. Прямая $PL$ пересекает описанную окружность треугольника $APC$ в точке $Q$. Докажите, что прямая $QB$ — биссектриса угла $AQC$. ( С. Берлов )
комментарий/решение олимпиада
Задача №65.  Барон Мюнхгаузен хвастается, что знает замечательный квадратный трехчлен с положительными коэффициентами: он сам имеет целый корень; если ко всем его коэффициентам прибавить по единице, то полученный трехчлен снова будет иметь целый корень; если второй раз прибавить ко всем коэффициентам по единице, то и этот трехчлен будет иметь целый корень. Не обманывает ли барон? ( С. Берлов )
комментарий/решение олимпиада
Задача №66.  По кругу стоят 2010 цифр, каждая из которых равна 1, 2 или 3. Известно, что при любом $k$ в любом блоке из $3k$ подряд идущих цифр каждая из цифр 1, 2, 3 встречается не больше $k+10$ раз. Докажите, что существует блок из нескольких подряд идущих цифр, в котором цифр каждого из видов поровну. ( С. Берлов )
комментарий/решение олимпиада
Задача №67.  Точка $H$ — ортоцентр остроугольного треугольника $ABC$. Внутри стороны $BC$ выбрана точка $D$. Точка $P$ построена таким образом, что $ADPH$ — параллелограмм. Докажите, что $\angle DCP < \angle BHP$. ( С. Берлов )
комментарий/решение олимпиада
Задача №68.  Саша и Дима играют в игру на доске $100\times 100$. В начале игры Саша выбирает 50 клеток и ставит на них по одному королю. После этого Дима выбирает одну из свободных клеток и выставляет на нее ладью. Далее игроки ходят по очереди (начинает Саша). Каждым своим ходом Саша перемещает каждого из королей на соседнюю по стороне или углу клетку, а Дима своим ходом передвигает ладью на любое количество клеток по горизонтали или вертикали. При этом ладья не может "перепрыгивать" через короля и "бить" короля. Сможет ли Саша действовать так, чтобы рано или поздно побить ладью одним из королей? ( С. Берлов )
комментарий/решение олимпиада
Задача №69.  На стороне $AB$ вписанного четырехугольника $ABCD$ нашлась такая точка $X$, что отрезок $CX$ делится пополам диагональю $BD$, а отрезок $DX$ делится пополам диагональю $AC$. Какое наименьшее значение может принимать величина $AB\over CD$? ( С. Берлов )
комментарий/решение олимпиада
Задача №70.  В городе Гамильтоновске каждая улица соединяет две площади, причем с любой площади можно по улицам попасть на любую другую. Губернатор обнаружил, что если закрыть на ремонт все площади произвольного маршрута, который не проходит ни по какой площади дважды, то все равно с любой из оставшихся площадей можно будет попасть на любую другую. Докажите, что существует маршрут, который проходит по каждой площади города ровно по одному разу и заканчивается там же, где начинается. ( С. Берлов )
комментарий/решение олимпиада
Задача №71.  На бесконечной клетчатой плоскости стоит несколько шахматных коней. При этом никакая клетка не находится под боем более, чем одного коня. (В частности, клетка, на которой стоит конь, может биться другим конем, но не двумя сразу). Саша обвел контур прямоугольника $14\times 16$. Какое наибольшее количество коней могло попасть в этот прямоугольник? ( С. Берлов )
комментарий/решение олимпиада
Задача №72.  Даны два натуральных числа $a < b$. Докажите, что из любых $b$ последовательных натуральных чисел можно выбрать два числа, произведение которых делится на $ab$. ( С. Берлов )
комментарий/решение(1) олимпиада
Задача №73.  Из картонного клетчатого прямоугольника $n\times (n-1)$ вырезан уголок, состоящий из всех клеток первой строки и первого столбца (всего в нем $2n-2$ клетки). Клетки бесконечной клетчатой плоскости покрашены в $k$ цветов так, что при любом положении картонного уголка на этой плоскости (с учетом поворотов и переворотов) все покрытые им клетки имеют разный цвет. При каком наименьшем $k$ это возможно? ( С. Берлов )
комментарий/решение олимпиада
Задача №74.  Имеется 25 масок, каждая своего цвета. $k$ мудрецов играют в игру: им показывают все маски, потом они договариваются между собой, после чего им надевают маски таким образом, что каждый из них видит маски на всех остальных (но не знает, на ком они надеты) и не видит свою. Никакие формы взаимодействия при этом не разрешаются. Все они одновременно называют по одному цвету, пытаясь угадать цвет своей маски. При каком наименьшем $k$ они могут так заранее договориться, чтобы хотя бы один из них непременно угадал? ( С. Берлов )
комментарий/решение олимпиада