Олимпиада Туймаада по математике. Старшая лига. 2009 год


Задача №1.  Даны три вещественных числа. Дробная часть произведения любых двух из них равна $1\over 2$. Докажите, что эти числа иррациональны. ( А. Голованов )
комментарий/решение
Задача №2.  Ожерелье состоит из 100 синих и некоторого количества красных бусин. Известно, что на любом отрезке ожерелья, содержащем 8 синих бусин, есть не менее 5 красных. Какое наименьшее количество красных бусин может быть в ожерелье? ( А. Голованов )
комментарий/решение
Задача №3.  На стороне $AB$ вписанного четырехугольника $ABCD$ нашлась такая точка $X$, что отрезок $CX$ делится пополам диагональю $BD$, а отрезок $DX$ делится пополам диагональю $AC$. Какое наименьшее значение может принимать величина $AB\over CD$? ( С. Берлов )
комментарий/решение
Задача №4.  Существует ли такое натуральное $n$, что среди двухсотых цифр после запятой в десятичных записях чисел $\sqrt{n}$, $\sqrt{n+1}$, $\sqrt{n+2}$, $\dots$, $\sqrt{n+999}$ сто раз встречается 0, сто раз — единица, $\dots$, сто раз — девятка? ( А. Голованов )
комментарий/решение
Задача №5.  Фокусник просит зрителя задумать трехзначное число $\overline{abc}$, а затем назвать ему сумму чисел $\overline{acb}$, $\overline{bac}$, $\overline{bca}$, $\overline{cab}$ и $\overline{cba}$. Он утверждает, что узнав эту сумму, сможет назвать исходное число. Не обманывает ли он? ( из материалов олимпиад )
комментарий/решение
Задача №6.  Расстановку фишек в клетках квадрата $n\times n$ назовем редкой, если в любом квадрате $2\times 2$ стоит не более 3 фишек. Сергей поставил в некоторые клетки доски по одной фишке так, что получилась редкая расстановка. Он заметил, однако, что если переставить любую фишку на любую свободную клетку, то перестановка перестанет быть редкой. При каких $n$ это возможно? ( С. Берлов )
комментарий/решение
Задача №7.  Дан треугольник $ABC$. Точка $B_1$ симметрична вершине $B$ относительно прямой $AC$, точка $C_1$ симметрична вершине $C$ относительно прямой $AB$. Точка $O_1$ симметрична центру описанной окружности треугольника $ABC$ относительно прямой $BC$. Докажите, что центр описанной окружности треугольника $AB_1C_1$ лежит на прямой $AO_1$. ( А. Акопян )
комментарий/решение
Задача №8.  Найдите наибольшее число $h$, удовлетворяющее следующему условию: для любого числа $a\in [0,h]$ и любого многочлена $P(x)$ степени 99, такого, что $P(0)=P(1)=0$, найдутся такие $x_1,x_2\in [0,1]$, что $P(x_1)=P(x_2)$ и $x_2-x_1=a$. ( А. Храбров, Д. Ростовский, Ф. Петров )
комментарий/решение