Олимпиада Туймаада по математике. Старшая лига. 2010 год


Задача №1.  Саша и Дима играют в игру на доске $100\times 100$. В начале игры Саша выбирает 50 клеток и ставит на них по одному королю. После этого Дима выбирает одну из свободных клеток и выставляет на нее ладью. Далее игроки ходят по очереди (начинает Саша). Каждым своим ходом Саша перемещает каждого из королей на соседнюю по стороне или углу клетку, а Дима своим ходом передвигает ладью на любое количество клеток по горизонтали или вертикали. При этом ладья не может "перепрыгивать" через короля и "бить" короля. Сможет ли Саша действовать так, чтобы рано или поздно побить ладью одним из королей? ( С. Берлов )
комментарий/решение
Задача №2.  Точка $H$ — ортоцентр остроугольного треугольника $ABC$. Внутри стороны $BC$ выбрана точка $D$. Точка $P$ построена таким образом, что $ADPH$ — параллелограмм. Докажите, что $\angle DCP < \angle BHP$. ( С. Берлов )
комментарий/решение
Задача №3.  По кругу стоят 2010 цифр, каждая из которых равна 1, 2 или 3. Известно, что при любом $k$ в любом блоке из $3k$ подряд идущих цифр каждая из цифр 1, 2, 3 встречается не больше $k+10$ раз. Докажите, что существует блок из нескольких подряд идущих цифр, в котором цифр каждого из видов поровну. ( С. Берлов )
комментарий/решение
Задача №4.  Докажите, что при любом вещественном $\alpha > 0$ число $[\alpha n^2]$ четно для бесконечного множества натуральных $n$. ( А. Голованов )
комментарий/решение
Задача №5.  Барон Мюнхгаузен хвастается, что знает замечательный квадратный трехчлен с положительными коэффициентами: он сам имеет целый корень; если ко всем его коэффициентам прибавить по единице, то полученный трехчлен снова будет иметь целый корень; если второй раз прибавить ко всем коэффициентам по единице, то и этот трехчлен будет иметь целый корень. Не обманывает ли барон? ( С. Берлов )
комментарий/решение
Задача №6.  Дано натуральное число $n$. Известно, что существуют такие 2010 последовательных натуральных чисел, что ни одно из них не делится на $n$, но их произведение кратно $n$. Докажите, что существуют такие 2004 последовательных натуральных чисел, что ни одно из них не делится на $n$, но их произведение кратно $n$. ( С. Берлов )
комментарий/решение
Задача №7.  Продолжения сторон $AB$ и $CD$ вписанного четырёхугольника $ABCD$ пересекаются в точке $P$, а продолжения сторон $AD$ и $BC$ — в точке $Q$. Докажите, что расстояние между ортоцентрами треугольников $APD$ и $AQB$ равно расстоянию между ортоцентрами треугольников $CQD$ и $BPC$. ( Л. Емельянов )
комментарий/решение
Задача №8.  В стране учатся $4^{9}$ школьников, живущих в четырех городах. В конце учебного года правительство провело ЕГЭ по 9 предметам, за каждый из которых каждый ученик получил 1 балл, 2 балла, 3 балла или 4 балла. Известно, что у любых двух учеников отметки хотя бы по одному предмету отличаются. При этом оказалось, что у любых двух учеников, живущих в одном городе, совпадают отметки хотя бы по одному предмету. Докажите, что найдется такой предмет, что у любых двух детей, живущих в одном городе, совпадают отметки именно по этому предмету. ( Ф. Петров )
комментарий/решение