Шакиев А.
Задача №1. Четырёхугольник $ABCD$ вписан в окружность $\Gamma$. Диагонали $AC$ и $BD$ пересекаются в точке $E$. Пусть $\omega_1$ и $\omega_2$ — описанные окружности треугольников $AEB$ и $CED$, соответственно. На дуге $AB$, не содержащей точку $E$, окружности $\omega_1$ выбрана точка $P$, а на дуге $CD$, не содержащей точку $E$, окружности $\omega_2$ выбрана точка $Q$ так, что $\angle AEP = \angle QED$. Отрезок $PQ$ пересекает $\Gamma$ в точках $X$ и $Y$. Докажите, что $PX=QY$. ( Шакиев А. )
комментарий/решение(1) олимпиада
Задача №2. Дан треугольник $ABC$, в котором $AB = AC$ и $\angle BAC > 90^\circ$. Точка $O$ — центр описанной окружности треугольника $ABC$. Точка $M$ симметрична точке $A$ относительно стороны $BC$. На продолжении стороны $BC$ за точку $C$ выбрана точка $D$. Прямая $DM$ пересекает окружность, описанную около треугольника $ABC$, в точках $E$ и $F$. Окружности, описанные около треугольников $ADE$ и $ADF$ пересекают сторону $BC$ в точках $P$ и $Q$ соответственно. Докажите, что точки $A$, $P$, $O$ и $Q$ лежат на одной окружности. ( Шакиев А. )
комментарий/решение(1) олимпиада
Задача №3. Дан треугольник $ABC$, в котором $AB = AC$ и $\angle BAC > 90^\circ$. Точка $O$ — центр описанной окружности треугольника $ABC$. Точка $M$ симметрична точке $A$ относительно стороны $BC$. На продолжении стороны $BC$ за точку $C$ выбрана точка $D$. Прямая $DM$ пересекает окружность, описанную около треугольника $ABC$, в точках $E$ и $F$. Окружности, описанные около треугольников $ADE$ и $ADF$ пересекают сторону $BC$ в точках $P$ и $Q$ соответственно. Докажите, что прямая $DA$ касается окружности, описанной около треугольника $POQ$. ( Шакиев А. )
комментарий/решение(2) олимпиада
Задача №4. Дан треугольник $ABC$, в котором $AB = AC$ и $\angle BAC > 90^\circ$. Точка $O$ — центр описанной окружности треугольника $ABC$. Точка $M$ симметрична точке $A$ относительно стороны $BC$. На продолжении стороны $BC$ за точку $C$ выбрана точка $D$. Прямая $DM$ пересекает окружность, описанную около треугольника $ABC$, в точках $E$ и $F$. Окружности, описанные около треугольников $ADE$ и $ADF$ пересекают сторону $BC$ в точках $P$ и $Q$ соответственно. Докажите, что прямая $DA$ касается окружности, описанной около треугольника $POQ$. ( Шакиев А. )
комментарий/решение олимпиада