Сам Ф.
Есеп №1. \q3 Өлшемі $2n\times 2n$ ұяшықты тақта берілген. Самат тақтаның кейбір ұяшықтарын көк немесе қызыл түске бояйды. Ол жалпы дәл $k$ ұяшықты бояу керек. Содан кейін Фархат қалған барлық боялмаған ұяшықтарды көк немесе қызыл түске келесі шарттар орындалатындай бояйды:
әр қатарда және әр бағанда көк және қызыл ұяшықтар саны тең;
ешқандай қатарда және ешқандай бағанда қатар келген бір түсті үш ұяшық жоқ;
кез келген екі қатар әртүрлі және кез келген екі баған әртүрлі. (Егер $r_1$ және $r_2$ қатарларының бір бағанда жататын әртүрлі түсті екі ұяшығы табылса, ондай $r_1$ және $r_2$ қатарларын әртүрлі деп есептейміз. Дәл сол сияқты баған үшін әртүрлі бағандарды анықтаймыз.)
Фархат Саматтың қалай бояғанына қарамастан тақтаны ең көп дегенде бір әдіспен ғана бояй алатындай $n$-ге тәуелді ең кіші мүмкін $k$ санын табыңыз. (Ұяшықты бірінші рет бояғаннан кейін үстінен тағы бояуға болмайды.) ( Сам Ф. )
комментарий/решение(1) олимпиада
Есеп №2. $\Omega$ және $\Gamma$ шеңберлері $A$ және $B$ нүктелерінде қиылысады. Осы шеңберлердің центрлері арқылы өтетін түзу $\Omega$ және $\Gamma$-ны, сәйкесінше, $P$ және $Q$ нүктелерінде қияды (мұнда $P$ және $Q$ нүктелері $AB$-ның бір жағында жатыр әрі $Q$ нүктесі $P$-ға қарағанда $AB$-ға жақынырақ орналасқан). $\delta$ шеңбері $AB$ кесіндісін $D$, ал $\Gamma$-ны $T$ нүктесінде жанайды (мұнда $\delta$ шеңбері және $P$, $Q$ нүктелері $AB$-ның бір жағында жатыр). $PD$ түзуі $\delta$-ны екінші рет $K$, ал $\Omega$-ны екінші рет $L$ нүктесінде қияды. $\angle QTK=\angle DTL$ екенін дәлелдеңіз. ( М. Кунгожин, И. Богданов, Сам Ф. )
комментарий/решение(2) олимпиада
Есеп №3. $A$ мен $B$ ойыншылары координаталық жазықтықта келесі ойын ойнайды. Басында $A$ ойыншысы координаталары бүтін сандар болатын нүктеге жаңғақты жасырады, одан кейін $B$ ойыншысы сол жаңғақты табуға тырысады. Бір жүрісте $B$ ойыншысы координаталары бүтін сандар болатын әртүрлі үш нүкте таңдайды, одан кейін $A$ ойыншысы сол үш нүктемен қоса жаңғақ орналасқан нүкте бір шеңбердің бойында жатқанын немесе жатпағанын айтады. Саны шекті жүрістер арқылы $B$ ойыншысы жаңғақты кепілді түрде таба алады ма? ( Зауытхан А., Сам Ф. )
комментарий/решение(1) олимпиада
Есеп №4. $A$ мен $B$ ойыншылары координаталық жазықтықта келесі ойын ойнайды. Басында $A$ ойыншысы координаталары бүтін сандар болатын нүктеге жаңғақты жасырады, одан кейін $B$ ойыншысы сол жаңғақты табуға тырысады. Бір жүрісте $B$ ойыншысы координаталары бүтін сандар болатын әртүрлі үш нүкте таңдайды, одан кейін $A$ ойыншысы сол үш нүктемен қоса жаңғақ орналасқан нүкте бір шеңбердің бойында жатқанын немесе жатпағанын айтады. Саны шекті жүрістер арқылы $B$ ойыншысы жаңғақты кепілді түрде таба алады ма? ( Зауытхан А., Сам Ф. )
комментарий/решение(2) олимпиада