Олимпиада имени Леонарда Эйлера
2009-2010 учебный год, I тур регионального этапа


Задача №1.  Однажды барон Мюнхгаузен, вернувшись с прогулки, рассказал, что половину пути он шёл со скоростью 5 км/ч, а половину времени, затраченного на прогулку — со скоростью 6 км/ч. Не ошибся ли барон? ( И. Рубанов )
комментарий/решение(1)
Задача №2.  Найдите какие-нибудь семь последовательных натуральных чисел, каждое из которых можно изменить (увеличить или уменьшить) на 1 таким образом, чтобы произведение семи полученных в результате чисел равнялось произведению семи исходных чисел. ( методкомиссия )
комментарий/решение(1)
Задача №3.  На гипотенузе $BC$ прямоугольного треугольника $ABC$ выбрана точка $K$ так, что $AB = AK$. Отрезок $AK$ пересекает биссектрису $CL$ в ее середине. Найдите острые углы треугольника $ABC$. ( И. Богданов )
комментарий/решение(1)
Задача №4.  Даны натуральные числа $a$ и $b$, причем $a < 1000$. Докажите, что если $a^{21}$ делится на $b^{10}$, то $a^2$ делится на $b$. ( П. Кожевников )
комментарий/решение(1)