Loading [MathJax]/jax/output/SVG/jax.js

Математикадан облыстық олимпиада, 2024 жыл, 11 сынып


Полные решения этих задач опубликованы в книге, доступный для заказа по ссылке
Есеп №1. Кез келген mn2024 натурал сандары үшін fm(n)=fmn(m) теңдігі орындалатындай барлық f:NN функцияларын табыңыз. (N — натурал сандар жиыны, f0(k)=k және барлық бүтін l1 үшін fl(k)=f(fl1(k)).) ( Зауытхан А. )
комментарий/решение(1)
Есеп №2. x,y,t натурал сандары x2+257=yt және 2t48 шарттарын қанағаттандырады. t жай сан екенін дәлелдеңіз. ( А. Васильев )
комментарий/решение(9)
Есеп №3. ABC үшбұрышында AL,BM,CN биссектрисалары мен AD,BE,CF биіктіктері жүргізілген. Егер DEF үшбұрышының ауданы LMN үшбұрышының ауданынан көп болса, онда ABC үшбұрышы доғалбұрышты болатынын дәлелдеңіз.
комментарий/решение(2)
Есеп №4. BC=2AB болатын ABC үшбұрышы берілген, ал I нүктесі іштей сызылған шеңбердің центрі. BAC бұрышының сыртқы биссектрисасы BC түзуін Y нүктесінде қияды. YI түзуі AC кесіндісінің ортасынан өтетінін дәлелдеңіз. ( Зауытхан А. )
комментарий/решение(2)
Есеп №5.  Теріс емес нақты a,b,c,d сандары (ab)(bc)(cd)(da)a2+b2+c2+d2=12 шартын қанағаттандырады. abcd<1,61 екенін дәлелдеңіз. ( Зауытхан А. )
комментарий/решение(2)
Есеп №6. 126 адамнан тұратын қоғамдық ұйымда 189 комитет құрылды (әрбір комитет кемінде екі адамнан тұрады, бір адам бірнеше комитетте бола алады). Осымен қатар, кез келген екі комитеттің құрамы бірдей емес. Сайланғаннан кейін, өзі мүшелікте болған барлық комитеттерден шығып кететін, ұйым төрағасын сайлау керек. Сайлаудан кейін кем дегенде 188 комитеттің құрамы қос-қостан әртүрлі болатындай төрағаны таңдауға болатынын дәлелдеңіз.
комментарий/решение