Олимпиада Туймаада по математике. Младшая лига. 2016 год


Задача №1.  Перед Таней и Сережей лежит куча из 2016 конфет. Таня и Сережа делают ходы по очереди, начинает Таня. При своем ходе ребенок может съесть либо одну конфету, либо, если в куче в данный момент четное число конфет, ровно половину всей кучи. Проигрывает не имеющий хода. Кто выиграет при правильной игре? ( А. Голованов )
комментарий/решение(1)
Задача №2.  На высоте $AA_1$ остроугольного треугольника $ABC$ отмечена точка $D$ такая, что $\angle BDC=90^\circ$, и точка $H$ — ортоцентр треугольника $ABC$. На отрезке $AH$ как на диаметре построена окружность. Докажите, что длина касательной, проведенной к этой окружности из точки $B$, равна длине отрезка $BD$. ( Л. Емельянов )
комментарий/решение(2)
Задача №3.  На одной из клеток клетчатой плоскости стоит кубик. На каждой грани кубика нарисована стрелочка в одном из четырех направлений, параллельных сторонам грани. Антон смотрит на кубик сверху и перекатывает его через ребро в направлении, указанном стрелкой, нарисованной на верхней грани. Докажите, что кубик никогда не заметет никакого квадрата $5\times 5$. ( А. Чухнов )
комментарий/решение
Задача №4.  Неотрицательные числа $a$, $b$ и $c$ удовлетворяют условию $a^2+b^2+c^2 \geq 3$. Докажите неравенство $(a+b+c)^3\geq 9(ab+bc+ca).$ ( А. Храбров )
комментарий/решение(2)
Задача №5.  Во всех клетках таблицы $10\times 10$ записаны положительные числа. На некоторых 5 клетках сидят лягушки, заслоняя числа в этих клетках. Костя посчитал сумму всех видимых чисел и получил $10$. Потом каждая лягушка перепрыгнула в соседнюю по стороне клетку, и Костя насчитал сумму $10^{2}$. Потом лягушки снова прыгнули, и у Кости получилась сумма $10^{3}$, и т.д. — каждая новая сумма оказывалась в 10 раз больше предыдущей. Какую наибольшую сумму мог получить Костя? ( К. Кохась )
комментарий/решение
Задача №6.  Существует ли такое натуральное число, состоящее из нечётных цифр, причём цифр 1, 3, 5, 7, 9 в нём поровну, которое делится на любое 20-значное число, получаемое из него вычёркиванием цифр (ни вычеркиваемые, ни оставшиеся цифры не обязаны стоять подряд)? ( С. Берлов )
комментарий/решение
Задача №7.  Числа $a$, $b$, $c$, $d$ таковы, что $0 < a \leq b \leq d \leq c$ и $a+c=b+d$. Докажите, что для любой внутренней точки $P$ отрезка длины $a$ этот отрезок является стороной описанного четырёхугольника с последовательными сторонами $a$, $b$, $c$, $d$, вписанная окружность которого проходит через точку $P$. ( Л. Емельянов )
комментарий/решение
Задача №8.  На карте полетов авиакомпании $K_{r,r}$ изображены несколько городов, некоторые пары городов связаны прямым (двусторонним) авиарейсом, причем всего имеется $m$ авиарейсов. Требуется выбрать две непересекающиеся группы по $r$ городов в каждой такие, что каждый город одной группы связан авиарейсом с каждым из городов второй группы. Докажите, что этот выбор можно осуществить не более чем $2 m^r$ способами. ( D. Conlon )
комментарий/решение