Болатов А.


Задача №1.  Найдите все функции $f : \mathbb{R}^+ \to \mathbb{R}^+$ такие, что для любых $x, y \in \mathbb{R}^+$ верно равенство: \[f(x) f(y) = f \left( \frac{xy}{x f(x) + y} \right).\] $\mathbb{R}^+$ обозначает множество положительных действительных чисел. ( Болатов А. )
комментарий/решение(3) олимпиада
Задача №2.  Найдите все функции $f : \mathbb{R}^+ \to \mathbb{R}^+$ такие, что для любых $x, y \in \mathbb{R}^+$ верно равенство: \[f(x) f(y) = f \left( \frac{xy}{x f(x) + y} \right).\] $\mathbb{R}^+$ обозначает множество положительных действительных чисел. ( Болатов А. )
комментарий/решение(1) олимпиада