Олимпиада имени Леонарда Эйлера
2011-2012 учебный год, II тур заключительного этапа


Задача №1.  Можно ли расставить на ребрах куба 12 натуральных чисел так, чтобы суммы чисел на любых двух противоположных гранях отличались ровно на единицу? ( Д. Храмцов )
комментарий/решение(1)
Задача №2.  Существуют ли такие различные натуральные числа $a$, $b$ и $c$, что число $a+1/a$ равно полусумме чисел $b+1/b$ и $c+1/c$? ( А. Голованов )
комментарий/решение(1)
Задача №3.  Углы треугольника ABC удовлетворяют условию $2\angle A+\angle B = \angle C$. Внутри этого треугольника на биссектрисе угла $A$ выбрана точка $K$ такая, что $BK = BC$. Докажите, что $\angle KBC = 2\angle KBA$. ( С. Берлов )
комментарий/решение(2)
Задача №4.  Пусть $n$ — натуральное число, большее 1. У Кости есть прибор, устроенный так, что если в него положить $2n+1$ различных по весу монет, то он укажет, какая из монет — средняя по весу среди положенных. Барон Мюнхгаузен дал Косте $4n+1$ различных по весу монет и про одну из них сказал, что она является средней по весу. Как Косте, использовав прибор не более $n+2$ раз, выяснить, прав ли барон? ( К. Кноп )
комментарий/решение(1)
результаты