Loading [MathJax]/jax/output/SVG/jax.js

Юниорская олимпиада по математике. Заключительный этап. 2020-2021 учебный год. 8 класс.


Задача №1.  Произведение 2021 положительного целого числа равно 110, а их сумма равна 2046. Чему равно самое большое из этих чисел?
   A) 10 B) 55 C) 110 D) 22 E) 2008
комментарий/решение(3)
Задача №2.  Мама купила коробку кускового сахара. Дети съели верхний слой, состоящий из 77 кусочков. Затем они съели боковой слой, состоящий из 44 кусочков. Наконец, они съели передний слой. Сколько кусочков осталось в коробке?
   A) 240 B) 288 C) 295 D) 300 E) 350
комментарий/решение
Задача №3.  Даже когда верблюд хочет пить, 84% его веса составляет вода. После того, как он напьется воды, его вес станет равным 800 кг, а вода будет составлять 85% его веса. Сколько весит верблюд, когда испытывает жажду?
   A) 760 кг B) 780 кг C) 715 кг D) 720 кг E) 750 кг
комментарий/решение(1)
Задача №4.  Футбольный мяч представляет собой многогранник с 32 гранями, 20 из которых — белые правильные шестиугольники, а 12 — черные правильные пятиугольники. Сколько вершин у такого многогранника?


   A) 72 B) 90 C) 60 D) 56 E) 52
комментарий/решение(9)
Задача №5.  В летнем лагере 70 ребят. Из них 27 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов; 3 спортсмена посещают и драмкружок, и хор. Сколько ребят не поют в хоре, не увлекаются спортом и не занимаются в драмкружке?
   A) 0 B) 15 C) 10 D) 22 E) 19
комментарий/решение(2)
Задача №6.  Две стороны четырёхугольника равны 2 и 9. Одна из диагоналей, длина которой равна 4, делит его на два равнобедренных треугольника. Чему равен периметр этого четырёхугольника?
   A) 17 B) 24 C) 19 D) 22 E) 16
комментарий/решение(1)
Задача №7.  Найти сумму корней уравнения: x2+|x1|=7/4.
   A) 3 B) 31 C) 1 D) 23 E) 0
комментарий/решение(3)
Задача №8.  Угол A ромба ABCD равен 20. Из вершины B проведены высоты ромба BM и BN. Найдите величину наибольшего угла треугольника BMN.
   A) 60 B) 120 C) 80 D) 90 E) 160
комментарий/решение(1)
Задача №9.  Укажите количество действительных корней уравнения (x26x)2+(x3)2=6.
   A) 0 B) 1 C) 2 D) 3 E) 4
комментарий/решение
Задача №10.  Три велосипедиста выехали в одном направлении с интервалом в 1 час. Первый ехал со скоростью 12 км/час, второй — 10 км/час. Третий велосипедист догнал сначала второго, а через 2 часа после этого и первого. Найти скорость третьего велосипедиста.
   A) 15 км/ч B) 18 км/ч С) 20 км/ч D) 22 км/ч E) 17 км/ч
комментарий/решение
Задача №11.  В ящике лежат цветные карандаши: 10 красных, 8 синих, 8 зелёных и 4 желтых. В темноте берем из ящика карандаши. Какое наименьшее число карандашей надо взять, чтобы среди них заведомо было не меньше 4-х карандашей одного цвета? А) 10 В) 11 С) 12 D) 14 E) 13
комментарий/решение(1)
Задача №12.  16 точек расположены на плоскости так, как показано на рисунке. Сколько Сколько существует треугольников с вершинами в этих точках?


   A) 326 B) 516 C) 44 D) 560 E) 246
комментарий/решение(1)