Областная олимпиада по математике, 2026 год, 11 класс


В окружность $\omega$ вписан равнобедренный треугольник $ABC$ ($AC=BC$). На отрезке $AB$ отмечена точка $D$ ($D$ ближе к $A$, чем к $B$). На меньшей дуге $CB$ окружности $\omega$ выбирается точка $K$. Прямая, проходящая через $D$ и перпендикулярная $CK$, пересекает прямые $AK$ и $BK$ в точках $P$ и $Q$ соответственно. Докажите, что все окружности, описанные около таких треугольников $PQK$, проходят через фиксированную точку, независимо от выбора точки $K$. ( М. Кунгожин )
посмотреть в олимпиаде

Комментарий/решение: