Олимпиада Туймаада по математике. Младшая лига. 2015 год
Существует ли возрастающая последовательность натуральных чисел
$(a_n)$ такая, что среди разностей $a_{n+1}-a_n$ встречаются все
натуральные числа ровно по одному разу, а среди разностей {$a_{n+2}-a_n$} встречаются только
натуральные числа, большие 2015, причем тоже ровно по одному разу?
(
А. Голованов
)
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.