Олимпиада Туймаада по математике. Старшая лига. 2014 год


Дан параллелограмм $ABCD$. Вневписанная окружность треугольника $ABC$ касается стороны $AB$ в точке $L$, а продолжения стороны $BC$ — в точке $K$. Прямая $DK$ пересекает диагональ $AC$ в точке $X$; прямая $BX$ пересекает медиану $CC_1$ треугольника $ABC$ в точке $Y$. Докажите, что прямая $YL$, медиана $BB_1$ треугольника $ABC$ и его же биссектриса $CC'$ пересекаются в одной точке. ( А. Голованов )
посмотреть в олимпиаде

Комментарий/решение: