Абу А.
Есеп №1. $\mathbb R^+$ — оң нақты сандар жиыны. Кез келген $x,y\in \mathbb R^+$ сандары үшін \[ f \left( x+\frac{f(xy)}{x} \right) = f(xy) f \left( y + \frac 1y \right)\] теңдігін қанағаттандыратын барлық $f: \mathbb R^+ \to \mathbb R^+$ функцияларын табыңыз. ( Абу А. )
комментарий/решение(1) олимпиада
Есеп №2. $\mathbb R^+$ — оң нақты сандар жиыны. Кез келген $x,y\in \mathbb R^+$ сандары үшін \[ f \left( x+\frac{f(xy)}{x} \right) = f(xy) f \left( y + \frac 1y \right)\] теңдігін қанағаттандыратын барлық $f: \mathbb R^+ \to \mathbb R^+$ функцияларын табыңыз. ( Абу А. )
комментарий/решение(1) олимпиада