Районная олимпиада, 2011-2012 учебный год, 10 класс


В зависимости от параметра $a$ найдите число вещественных решений $(x,y)$ системы $ \left\{ \begin{array}{rcl} |x|+|y| =1,\\ x^2 + y^2 = a.\\ \end{array} \right. $
посмотреть в олимпиаде

Комментарий/решение:

пред. Правка 2   0 | проверено модератором
2017-07-30 04:46:48.0 #

При $a=\frac{1}{2}$ и $a=1$ — четыре корня; при $\frac{1}{2} <a<1$ — восемь корней; при $a <\frac{1}{2} $ и $a>1$ — нет корней.

График первого уравнения определяет ромб, вершины которого имеют координаты ${(0,1)}$, ${(1,0)}$, ${(0,-1)}$, ${(-1,0)}$. Второе уравнение определяет окружность, центр которой находится в начале координат. Эта окружность может быть вписанным в ромб или описанной около ромба, может пересекать стороны ромба или вообще не иметь ни одну общую точку с ромбом. Рассматривая эти случаи и получается ответ.