Республиканская олимпиада по математике, 2004 год, 11 класс
Для вещественных чисел $1\leq a\leq b \leq c \leq d \leq e \leq f$ докажите неравенство $$(af + be + cd)(af + bd + ce) \leq (a + b^2 + c^3 )(d + e^2 + f^3 ).$$
(
А. Васильев
)
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.