7-я олимпиада им. Шалтая Смагулова, 7 класс, 2 тур
Комментарий/решение:
Допустим $CL$ пересекает $AB$ в точке $E$. Если $\angle KCL = \alpha$ $\Rightarrow$ $\angle BCK = \angle LCD = 60 - \alpha$. $\angle BCK + \angle KCL + \angle LCD = \angle BCD = 120^\circ - \alpha = 90^\circ$ $\Rightarrow$ $\alpha = 30$ Так как $\triangle CDK$ равносторонний $CE$ биссектриса и медиана и высота. Значить $\angle BCE = 90^\circ$. Так как $\triangle BCL$ равносторонний $BE$ и высота и биссектриса и медиана. Значить $\angle LBK = \angle KBC = 30^\circ$ $\Rightarrow$ $\angle ABL = 30^\circ$ $\Rightarrow$ $\angle ABK = 60^\circ$. $\angle KDA = 30^\circ$ так как $\angle CDK = 60 ^\circ$. $\angle BAD + \angle ADK + \angle KBA = 90^\circ + 30^\circ + 60^\circ = 180^\circ$ $\Rightarrow$ $ABD$ это треугольник. Значить $B, K , D$ лежат на одной прямой
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.