Международная олимпиада 2024, Бат, Великобритания, 2024 год
Даны бесконечная последовательность положительных целых чисел $a_{1}, a_{2}, a_{3}, \ldots$ и положительное целое число $N$. Известно, что для любого $n>N$ число $a_{n}$ равно количеству раз, которое число $a_{n-1}$ встречается среди $a_{1}, a_{2}, \ldots, a_{n-1}$. Докажите, что хотя бы одна из последовательностей $a_{1}, a_{3}, a_{5}, \ldots$ и $a_{2}, a_{4}, a_{6}, \ldots$ является в конечном итоге периодической. (Последовательность $b_{1}, b_{2}, b_{3}, \ldots$ называется в конечном итоге периодической, если существуют такие положительные целые числа $p$ и $M$, что $b_{m+p}=b_{m}$ для всех $m \geqslant M$.)
посмотреть в олимпиаде
Комментарий/решение:
Допустим это неверно. Но по условию это надо доказать, что значит, что это является верным утверждением. А значит это противоречие предположению. Поэтому это верно => доказано
Ты споришь с условиями IMO? Ты и вправду думаешь что условия самой международной олимпиады по математике будут неверными? Тем более тут написано докажите, что значит, что надо доказать верное
Неверьте всему что написанно,реальность — иллюзия, вселенная — голограмма, скупайте золото
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.