Республиканская олимпиада по математике, 2024 год, 11 класс


Бүтін $m\ge 3$ саны және мүшелер саны шексіз болатын $(a_n)_{n\ge 1}$ натурал сандар тізбегі кез келген натурал $n$ саны үшін \[a_{n+2} = 2\sqrt[m]{a_{n+1}^{m-1} + a_n^{m-1}} - a_{n+1} \] теңдігін қанағаттандырады. $a_1 < 2^m$ екенін дәлелдеңіз. ( Сатылханов К. )
посмотреть в олимпиаде

Комментарий/решение: