Республиканская олимпиада по математике, 2023 год, 10 класс


Жазықтықта ешқандай үшеуі бір түзудің бойында жатпайтын 2000 нүктеден тұратын $G$ графы берілген. Олардың 1000-ы қара, ал қалған 1000-ы қызыл түске боялған. 100 қызыл нүкте дөңес 100-бұрыштың төбелері болатындай, ал қалған 1900 нүкте осы 100-бұрыштың ішінде жататындай 100 қызыл нүкте табылатыны белгілі. Қызыл нүктелерді қосатын кез келген кесінді қара нүктелерді қосатын ешбір кесіндімен қиылыспайтындай ұштары бір түсті бірнеше кесінділерді жүргізуге болатынын, және $G$-ның әрбір төбесінен сол түске боялған кез келген төбеге жете алатындай, бірнеше кесінді жүргізе алатынымызды дәлелдеңіз (графтың қабырғалары — бұл жүргізілген кесінділер). ( Зауытхан А. )
посмотреть в олимпиаде

Комментарий/решение: