Математикадан облыстық олимпиада, 2022 жыл, 11 сынып
$AB = AC$ және $\angle BAC > 90^\circ$ болатындай $ABC$ үшбұрышы берілген. $O$ нүктесі $ABC$ үшбұрышына сырттай сызылған шеңбердің центрі. $M$ нүктесі $A$ нүктесіне $BC$ қабырғасына қатысты симметриялы нүкте. $BC$ түзуінің бойынан $C$ нүктесінен әрі созындысынан $D$ нүктесі алынған. $DM$ түзуі $ABC$ үшбұрышына сырттай сызылған шеңберді $E$ және $F$ нүктелерінде қияды. $ADE$ және $ADF$ үшбұрыштарына сырттай сызылаған шеңберлері $BC$ қабырғасын $P$ және $Q$ нүктесінде қияды. $DA$ түзуі $POQ$ үшбұрышына сырттай сызылған шеңберді жанайтынын дәлелдеңіз.
(
Шакиев А.
)
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.