Математикадан облыстық олимпиада, 2022 жыл, 11 сынып


$x^3 + 1$ саны $y^2$-қа, ал $y^3 +1$ саны $x^2$-қа бөлінетіндей барлық $(x, y)$ натурал сандар жұптарын табыңыз. ( Абдыкулов А. )
посмотреть в олимпиаде

Комментарий/решение:

пред. Правка 2   1
2022-11-27 11:35:56.0 #

Допустим $x=y$, то $x^{3}+1$ делится на $x^2$, и так как $x^3$ делится на $x^2$ то и $1$ делится на $x^2$, значит $x=y=1.$

Теперь допустим что $x^3+1=y^2$ (или наоборот, симметрично). Значит $y(x^3+1)=y^3$, а еще по второму выходит что $y^3\equiv -1(x^2)$, и так как $(x^3+1) \equiv 1(x^2)$ то $y(x^3+1)\equiv y \equiv -1(x^2).$

$y+1$ делится на $x^2 \rightarrow y \geq x^2-1 \rightarrow y^2 \geq (x^4-2x^2+1) \rightarrow (x^3+2x^2) \geq x^4 \rightarrow (x+2) \geq x^2.$ а при $x\geq 3$ по индукции это невозможно. Значит получаем ответы $x=2; y=3$ (или наоборот).

Значит получаем что $x>y$ и $y^3+1=x^2t$ где $t>1$ и $x>2.$ По первому получается $x^3 \equiv -1(y^2)$ и $x^3t \equiv -t(y^2).$ Так как $x^3t=x(y^3+1) \rightarrow x^3t \equiv x \equiv -t(y^2)$ и $x+t$ делится на $y^2$, значит $x+t \geq y^2.$ Легко доказываем что $xy>x+y$ значит $xy \geq x+y+1(y>t)\geq y^2+1 \rightarrow \frac{x^2t}{y}>xy$, противоречие.