Областная олимпиада по математике, 2022 год, 11 класс
В остроугольном треугольнике ABC сторона AC наибольшая. Окружность ω1 с центром в точке A и радиусом AB пересекает сторону BC в точке F. Окружность ω2 с центром в точке C и радиусом CB пересекает сторону AB в точке E. Окружности ω1 и ω2 вторично пересекаются в точке D. Прямая, параллельная EF и проходящая через B, вторично пересекает окружности ω1 и ω2 в точках G и T соответственно. Докажите, что GT=DF+DE.
(
С. Полянских
)
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.