Математикадан республикалық олимпиада, 2020-2021 оқу жылы, 10 сынып
$(a_n)$ және $(b_n)$ тізбектері келесі шарттармен берілген: $a_1=b_1=1$ және әрбір натурал $n$ саны үшін
$a_{n+1}=a_n+\sqrt{a_n}$, $b_{n+1}=b_n+\root 3\of {b_n}$. $a_n\leq b_k < a_{n+1}$ теңсіздігі дәл 2021 $k$ үшін орындалатындай натурал $n$ санының табылатынын дәлелдеңіз.
(
А. Голованов
)
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.