Республиканская олимпиада по математике, 2021 год, 10 класс


Последовательности $(a_n)$ и $(b_n)$ заданы условиями $a_1=b_1=1$, $a_{n+1}=a_n+\sqrt{a_n}$, $b_{n+1}=b_n+\root 3\of {b_n}$ при всех натуральных $n$. Докажите, что существует натуральное число $n$, для которого неравенство $a_n\leq b_k < a_{n+1}$ выполнено ровно при 2021 значениях $k$. ( А. Голованов )
посмотреть в олимпиаде

Комментарий/решение: