Городская Жаутыковская олимпиада по математике, 8 класс, 2017 год


На доске написаны натуральные числа ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n}}$ (не обязательно различные). За ход разрешается стереть любые два числа, и записать вместо них НОД и НОК стертых чисел, при условии, что НОД и НОК не совпадают со стертыми числами. Докажите, что количество возможных операции конечно и то, что результат (как множество чисел) не зависит от последовательности операции. ( Ким А. )
посмотреть в олимпиаде

Комментарий/решение: