Processing math: 100%

12-ші халықаралық Жәутіков олимпиадасы, 2016 жыл


Центрі O нүктесі болатын шеңберге ABCD төртбұрышы іштей сызылған; оның диагональдары M нүктесінде қиылысады. ABM үшбұрышына сырттай сызылған шеңбер AD және BC қабырғаларын сәйкесінше N және K нүктелерінде қияды. NOMD және KOMC төртбұрыштарының аудандары тең екенін дәлелдеңдер. ( Емил Стоянов )
посмотреть в олимпиаде

Комментарий/решение:

Комментарии от администратора Комментарии от администратора №1.     Пусть ω1 — описанная окружность четырёхугольника ABCD, а ω2 — описанная окружность треугольника ABM. Углы CAD и DBC опираются на одну дугу окружности ω1 и поэтому равны. Отсюда следует, что хорды MN и MK, на которые эти углы опираются в ω2, также равны. Отрезки OD и OC равны как радиусы ω1 Пусть t — касательная прямая к окружности ω1 в точке D. Угол между t и AD равен ABD (потому что оба равны половине дуги AD) и, следовательно, равен MND (так как четырёхугольник ABMN вписанный). Таким образом, отрезок MN параллелен t, значит, перпендикулярен OD. Аналогично отрезок MK перпендикулярен OC. Следовательно, площади четырёхугольников NOMD и KOMC равны, так как соответственные диагонали этих четырёхугольников равны и в обоих четырёхугольниках диагонали перпендикулярны.

  1
4 года назад #

Пусть ACD=c тогда DBA=c

Пусть CDB=a тогда CAB=a

Пусть CBD=b тогда CBD=b

Так как O-центр описанной окружности ABCD заметим что OC=OP заметим что KM=MN; так как KBM=MAN заметим что DMN=a+b ведь точки M,N,B,A-лежат на одной окружности также заметим что CNK=b+c ведь K,M,A,B

-лежат на одной окружности. Пусть DOMN=Q и COKM=R пусть MDO=x и MCO=y заметим что x+a=y+c также мы имеем DQN=MDQ+DMQ=a+b+x , CRK=RCM+CMK=b+c+y откуда следует DQN=CRK. A(NOMD)=MQQDsin(MQD)2+DQQNsin(DQN)2+NQQOsin(NQD)2+MQQOsin( angleMQD)2=sin(DQN)(MQQD+DQQN+NQQO+QOMQ)2=sin(DQM)ODMN2 АНАЛОГИЧНО A(MOKC)=sin(CRK)COMK2 также мы знаем что MN=MK;CO=OD и DQN=CRK A(MOKC)=A(NOMD)