Математикадан аудандық олимпиада, 2015-2016 оқу жылы, 8 сынып


$ABCD$ трапециясында $BC$ табанының ұзындығы 10, $AD$ табанының ұзындығы $3$, $CD=7$ және $\angle ADC=140{}^\circ $. $\angle ABC$ бұрышын табыңыз.
посмотреть в олимпиаде

Комментарий/решение:

Комментарии от администратора Комментарии от администратора №1.     Ответ. $70^\circ$.
Решение. Отметим на отрезке $BC$ точку $E$ такую, что $BE=AD=3$. Тогда $ABED$ — параллелограмм, и $EC=10-3=7=CD$. Следовательно, $CDE$ — равнобедренный треугольник. Из этого равнобедренного треугольника найдем: $\angle BCD=180^\circ - \angle ADC=40^\circ$, $\angle ABC= \angle DEC = (180^\circ-\angle BCD)/2=70^\circ$.