Олимпиада Туймаада по математике. Старшая лига. 2011 год


$P(n)$ — квадратный трехчлен с целыми коэффициентами. Для каждого натурального $n$ у числа $P(n)$ нашелся собственный делитель $d_n$ (т.е. $1 < d_n < P(n)$) так, что последовательность $(d_n)$ — возрастающая. Докажите, что либо $P(n)$ можно разложить в произведение двух линейных многочленов с целыми коэффициентами, либо значения $P(n)$ во всех натуральных точках делятся на одно и то же натуральное $m > 1$. ( А. Голованов )
посмотреть в олимпиаде

Комментарий/решение: