Математикадан 39-шы халықаралық олимпиада, 1998 жыл, Тайбэй


Кез келген $s$ және $t$ натурал сандары үшін $f\left( {{t}^{2}}f\left( s \right) \right)=s{{\left( f\left( t \right) \right)}^{2}}$ орындалатындай барлық $f:\mathbb{N}\to \mathbb{N}$ функциялар қарастырылады. $f\left( 1998 \right)$ мәнінің мүмкін болатын ең кіші мәнін табыңыздар.
посмотреть в олимпиаде

Комментарий/решение:

  1
2017-02-12 19:51:38.0 #

$$f(t^2f(s))=s(f(t))^2$$

$$\mathbb{D}(f)\in\mathbb{N}\Rightarrow t=1 \Rightarrow f(f(s))=s(f(1))^2$$

$$f(1)=a,(\forall a\in\mathbb{N})\Rightarrow f(f(s))=a^2s$$

$$ s=1 \Rightarrow f(at^2)=(f(t))^2$$

$$t=s\Rightarrow \left\{ \begin{gathered} f(f(s))=a^2s \\ f(as^2)=(f(s))^2 \\ \end{gathered} \right. \Rightarrow f(x)=ax$$

$$f(1998)=1998a=\zeta(a)$$

$$\mathbb{D}(\zeta)\in\mathbb{N}\Rightarrow a=1\Rightarrow f_{min}(1998)=\zeta(1)=1998$$