4-я Международная Жаутыковская олимпиада, 2008 год
Точки $K$, $L$, $M$, $N$ — соответственно середины сторон $AB$, $BC$,
$CD$, $DA$ выпуклого четырехугольника $ABCD$. Прямая $KM$ пересекает
диагонали $AC$ и $BD$ в точках $P$ и $Q$ соответственно. Прямая $LN$
пересекает диагонали $AC$ и $BD$ в точках $R$ и $S$ соответственно.
Докажите, что если $AP\cdot PC=BQ\cdot QD$, то $AR\cdot RC=BS\cdot SD$.
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.