Республиканская олимпиада по математике, 2014 год, 10 класс
Из доски 2n×2n (n≥3) вырезали одну клетку. Докажите, что оставшуюся часть доски можно покрыть без наложений уголками из 3-х клеток по крайней мере 34n−3 различными способами.
(
Д. Елиусизов
)
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.