Loading [MathJax]/jax/output/SVG/jax.js

Олимпиада имени Леонарда Эйлера
2012-2013 учебный год, II тур дистанционного этапа


Квадрат 20×20 разбит на единичные квадратики. Несколько сторон единичных квадратиков стёрты, причем стёртые отрезки не имеют общих концов, а на верхней и правой сторонах квадрата стёртых отрезков нет. Докажите, что из левого нижнего угла квадрата можно добраться в правый верхний по нестёртым отрезкам.
посмотреть в олимпиаде

Комментарий/решение:

Комментарии от администратора Комментарии от администратора №1.     Решение. Из каждой вершины квадратика, кроме правой верхней вершины квадрата20×20, можно сделать ход либо вправо, либо вверх — иначе два стертых отрезка имели бы общий конец. Поэтому, начав с левого нижнего угла квадрата 20×20 и сделав 40 таких ходов, мы попадем в его правый верхний угол.