Олимпиада имени Леонарда Эйлера2009-2010 учебный год, I тур дистанционного этапа
Точка $D$ лежит на гипотенузе $AB$ прямоугольного треугольника $ABC$, но не совпадает с ее серединой. Докажите, что среди отрезков $AD$, $BD$ и $CD$ нет равных.
посмотреть в олимпиаде
Комментарий/решение:
Комментарии от администратора Комментарии от администратора №1. Решение. $AD$ не равно $BD$ по условию. Допустим, $AD = CD$. Тогда равны углы $DAC$ и $ACD$. Пусть каждый из них равен $x$. Но тогда каждый из углов $DAB$ и $ABD$ равен $90^\circ-x$, откуда $AD =BD = CD$ — противоречие. Аналогично, $CD$ не может равняться $BD$.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.