Математикадан республикалық олимпиада, 2012-2013 оқу жылы, 10 сынып
Комментарий/решение:
1)Пусть $E$ - точка пересечения окружностей описанных около треугольников $APB, \ DPC$, докажем что $K,P,E$ лежат на одной прямой, тогда когда $ABCD$ вписанный (по условию).
Доказательство: Точка $E$ служит точкой Микеля для четырехугольника $KCBP$ или описанные окружности около $ACK,BDK, DPC, APB$ пересекаются в $E$ , положим что $P$ лежит на $KE$ тогда должно выполнятся $ \angle KEC = \angle BAC = \angle BAP = \angle BEP$ и $\angle KEC = \angle PEC = \angle BDC$ или $\angle BAC = \angle BDC$ то есть $ABCD$ вписанный.
2) Докажем что $KMNE$ вписанный, для этого докажем что $MEB, DNE$ подобны.
Доказательство: из выше описанного следует что $\angle CDE = \angle APE = \angle ABE$ то есть треугольники $AEB, DEC$ подобны и так как в подобных треугольниках, соответственные стороны в данном случае $AB,CD$ взяты точки $M,N$ делящие их в $\dfrac{AM}{MB} = \dfrac{CN}{ND}$ откуда $MEB, DEN$ подобны, значит $\angle DEN = \angle MEB$ следует что $\angle EMB = \angle END$ откуда $KMNE$ вписанный.
3) Докажем что $QPRE$ так же вписанный, это следует из вписанности $KMNE$ и $AECK$ (из пункта $1$) действительно
Доказательство: $\angle EMN = \angle EKN = \angle EKC = \angle EAC $ или $EAMQ$ вписанный (так же как и $DERN$) , откуда $\angle EQR = \angle EAM$ с другой стороны $\angle ECD = \angle EPR $ но $\angle EAM = \angle ECD$ (из подобия $DEC, AEB$) откуда $\angle EQR = \angle EPR $ или $ EQPR$ вписанный.
4) Докажем что $E$ будет точкой касания окружностей $PRQ, KMN$.
Доказательство: Проведем касательную $l$ к окружности $QPRE$ и возьмем на $l$ точку $X$, тогда $\angle XER = \angle EQR = \angle EAM$, проведем аналогично касательную $l_{1}$ к окружности $KMNE$ и возьмем на $l_{1}$ точку $Y$ тогда $\angle YEN = \angle EMN = \angle EKN = \angle EAQ$ отметим что $\angle EAM - \angle EAQ = \angle BAC = \angle CDR = \angle NER$ но так как $\angle NER = \angle XER - \angle XEN$ значит $X=Y$ то есть $X,Y$ лежат на одной и той же касательной.
Ответ: фиксированная точка , есть точка $E$.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.