А. Солынин
Задача №1. Таблица $70\times 70$ заполнена числами от 1 до 4900: в первой строке слева направо выписаны числа от 1 до 70 в порядке возрастания; во второй строке точно так же выписаны числа от 71 до 140, и т.д.; в последней строке слева направо выписаны числа от 4831 до 4900. Можно ли в этой таблице найти такую клеточку, что сумма пяти чисел, находящихся в ней и четырёх клеточках, соседних с ней по сторонам, равна 2018? ( А. Солынин )
комментарий/решение(1) олимпиада
Задача №2. На парковке стоят машины. Среди них есть машины марок «Тойота», «Хонда», «Шкода», а также машины других марок. Известно, что не «Хонд» в полтора раза больше, чем не красных машин; не «Шкод» в полтора раза больше, чем не желтых машин; наконец, не «Тойот» вдвое меньше, чем красных и желтых машин вместе. Докажите, что «Тойот» не меньше, чем «Хонд» и «Шкод» вместе. ( А. Солынин )
комментарий/решение(2) олимпиада