Аманкельды А.
Задача №1. Рассмотрим всевозможные наборы натуральных чисел $(x_1,x_2, \ldots,x_{100})$ такие, что $1 \le x_i \le 2017$ для каждого $i =1, 2, \ldots, 100$. Будем говорить, что набор $(y_1,y_2, \ldots,y_{100})$ больше набора $(z_1,z_2, \ldots,z_{100})$, если $y_i > z_i$ для каждого $i =1, 2, \ldots, 100$. Какое наибольшее число наборов можно выписать на доску так, чтобы никакой набор не был больше никакого другого? ( Ильясов С., Аманкельды А. )
комментарий/решение(1) олимпиада