Loading [MathJax]/jax/output/SVG/jax.js

Олимпиада имени Леонарда Эйлера
2013-2014 учебный год, III тур дистанционного этапа


Задача №1.  Коля, Вася и Петя пошли за покупками. Всего у них с собой 2200 рублей, и ни у кого нет монет мельче рубля. У Коли с собой в 18 раз меньше денег, чем у Васи. Докажите, что Петя сможет купить мороженое за 15 рублей.
комментарий/решение(1)
Задача №2.  На стороне AC треугольника ABC с углом 120 градусов при вершине B отмечены такие точки D и E, что AD=AB и CE=CB. Из точки D опущен перпендикуляр DF на прямую BE. Найдите отношение BD/DF.
комментарий/решение(1)
Задача №3. 30 человек выстроены в шесть шеренг по пять человек в каждой. Каждый из них либо рыцарь, всегда говорящий правду, либо лжец, который всегда лжёт, и всем им известно, кто из них рыцарь, а кто — лжец. Журналист спросил у каждого из них: «Верно ли, что найдутся хотя бы 4 шеренги, в каждой из которых лжецов больше половины?». Какое наибольшее количество ответов "да" он мог услышать?
комментарий/решение(1)
Задача №4.  Миша и Маша ехали на поезде в Киров. Миша лежал на полке, а Маша смотрела в окно. «Далеко ли до Кирова?» — спросил Миша у Маши в 12.00. «73 километра», — ответила Маша. На тот же вопрос, заданный в 12.15 и 12.45, Маша ответила: «62 километра» и «37 километров». Известно, что Маша, если расстояние составляло не целое число километров, каждый раз округляла его до ближайшего целого числа (а если таких было два — то до любого из них по своему выбору). Найдите скорость поезда, если известно, что она была постоянной. Укажите все возможности и докажите, что других нет.
комментарий/решение(1)
Задача №5.  Двое играют в игру. Вначале у них есть прямоугольный лист бумаги размером m×n, где m и n — натуральные числа, большие 1. Игроки ходят по очереди. Каждым ходом игрок разрезает имеющийся прямоугольник на два, один из которых имеет площадь 1, и выбрасывает прямоугольник единичной площади. Проигрывает тот, после хода которого у оставшегося прямоугольника есть сторона длины строго меньше 1 или остался квадрат 1×1. Кто победит при правильной игре: тот, кто ходит первым, или его партнёр, — и как ему для этого надо играть?
комментарий/решение(1)