Математикадан республикалық олимпиада, 2005-2006 оқу жылы, 11 сынып


$ABCD$ тетраэдрінде $A$ төбесінен $CD$, $BD$, $BC$ қабырғаларындағы екі жақты бұрыштарын тең екіге бөлетін жазықтықтарға $AB'$, $AC'$, $AD'$ перпендикулярлары жүргізілген. $(B'C'D')$ жазықтығы $(BCD)$ жазықтығына параллель екенін дәлелдеңіздер.
посмотреть в олимпиаде

Комментарий/решение:

пред. Правка 2   1
2023-04-20 17:20:56.0 #

По одному из следствий леммы 255: $B'$ лежит плоскости, содержащей среднюю линию треугольника $ABC$, параллельной плоскости $BCD$, $C'$ лежит плоскости, содержащей среднюю линию $ACD$, параллельной плоскости $BCD$, $D'$ лежит плоскости, содержащей среднюю линию $ADB$ параллельной плоскости $BCD$, значит плоскости $(B'C'D')$ и $(BCD)$ параллельны.