Математикадан аудандық олимпиада, 2011-2012 оқу жылы, 10 сынып


Нақты $c$ және $d$ сандары төмендегі теңдеулер жүйесін қанағаттандырады: $\left\{ \begin{array}{l} {c^3} - 3{c^2} + 5c - 17 = 0,\\ {d^3} - 3{d^2} + 5d + 11 = 0. \end{array} \right.$ Олай болса, $c+d$ қосындысын табыңдар.
посмотреть в олимпиаде

Комментарий/решение:

  0
2018-08-28 18:40:39.0 #

$$ (c^3-3c^2+5c-17)+(d^3-3d^2+5d+11)=0$$

$$ (c^3+d^3)-3(c^2+d^2)+5(c+d)-6=0$$

$$ c+d=x \Rightarrow x(x^2-3cd)-3(x^2-2cd)+5x-6=0$$

$$ x^3-3x^2+5x-6 -3cd(x-2)=0$$

$$ (x-2)(x^2-x+3) -3cd(x-2)=0$$

$$(x-2)(x^2-x+3-3cd)=0$$

$$\textbf{1)} x-2=0 \Rightarrow x=2$$

$$ \textbf{2)} x^2-x+3-3cd=0$$

$$ x=c+d \Rightarrow c^2-c(d+1)+d^2-d+3=0$$

$$ D=(d+1)^2 -4d^2+4d-12=-3(d-1)^2-8 <0\Rightarrow x\in \varnothing$$

$$ c+d=2$$