Областная олимпиада по математике, 2014 год, 9 класс
Комментарий/решение:
Из равенства треугольников \triangle CPD = \triangle RCB следует DC=BR=AB, то есть QB - медиана треугольника AQR, \angle AQP=90^\circ так как угол, опирающийся на диаметр - прямой, следовательно \triangle AQR прямоугольный, а так как QB медиана,проведенная на гипотенузу BQ=BR
Пусть $\angle QAD = \alpha$. $\angle AQP=90^\circ $, как опирающийся на диаметр $AP $. Тогда $\angle APQ=90^\circ-\alpha $. Треугольники $\triangle ADQ $ и $\triangle PDQ $ равнобедренные, т.к. $AQ, DQ, DP $- радиусы. $\angle DAQ=\angle AQD =\alpha $; $\angle DQP =\angle QPD=90^\circ-\alpha$. $\angle QDP=2\alpha $, $\angle CDQ=90^\circ-2\alpha $. Пусть $BQ$ пересекает $CD $ в точке $F$ .
$\angle BFC=2\alpha=\angle QFD => \angle FQD = 90^\circ => \angle BQR=\alpha.$
$\angle ARP=\alpha =\angle BRQ=> \angle BRQ=\angle BQR=\alpha=>\triangle RBQ$ равнобедренный,$=>BR=BQ \square$.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.