Loading [MathJax]/jax/output/SVG/jax.js

Математикадан облыстық олимпиада, 2011-2012 оқу жылы, 10 сынып


Өлшемі 2m×n болатын тіктөртбұрыш өлшемі 2×1 болатын mn тіктөртбұрыш плиткалармен толық жабылған. Егер тіктөртбұрышты бос емес екі бөлікке бөлетін және плиткалардың ешқайсысының ішкі нүктелері арқылы өтпейтін түзу табылса, бұл жабуды трансверсальды деп атаймыз.
a) Өлшемі 6×6 болатын тіктөртбұрыштың 18 плиткамен жабуының кез келгені трансверсальды болатынын дәлелдеңдер.
b) Өлшемі 6×7 болатын тіктөртбұрыштың 21 плиткамен трансверсальды емес жабуы табыла ма?
посмотреть в олимпиаде

Комментарий/решение:

  1
4 года 2 месяца назад #

а) 6*6 болатын тіктөртбұрыштың яғни, шаршының 18 плиткамен жабуының кез келген түрі трансверсалды болады. Себебі, біріншіден бұл фигура шаршы яғни 6 клетканы 2 ге және 1 ге бөлгенде ешқандай қалдық қалмайды. Сондықтан да плиткалардың қалай орналасқанына қарамастан, бұл фигураның қақ ортасынан жүргізілген түзу плиткаларды қимайды. Әрине плиткалардың қалай орналасқанына тікелей байланысты.

б) Жоғарыда көрсеткен дәлелдеуге сүйеніп 6*7 болатын тіктөртбұрыштың 21 плиткамен трансверсальды емес жабуы табылады деп айта аламын. 7 2ге қалдықсыз бөлінбейді . Яғни плиткалардың барлығын вертикаль қою қолдан келсе ал горизанталь қою мүмкін емес. Сәйкесінше, трансверсальды емес жабуы табылады.