Областная олимпиада по математике, 2012 год, 10 класс
Полное замощение прямоугольника $2m\times n$ с помощью $mn$ прямоугольных плиток
$2\times 1$ называется $\textit{трансверсальным}$, если найдется прямая, делящая прямоугольник на две непустые части и не проходящая через внутренние точки плиток.
а) Докажите, что любое замощение прямоугольника $6\times 6$ с помощью 18 плиток является трансверсальным.
б) Найдется ли не трансверсальное замощение прямоугольника $6\times 7$ с помощью 21 плитки?
посмотреть в олимпиаде
Комментарий/решение:
а) 6*6 болатын тіктөртбұрыштың яғни, шаршының 18 плиткамен жабуының кез келген түрі трансверсалды болады. Себебі, біріншіден бұл фигура шаршы яғни 6 клетканы 2 ге және 1 ге бөлгенде ешқандай қалдық қалмайды. Сондықтан да плиткалардың қалай орналасқанына қарамастан, бұл фигураның қақ ортасынан жүргізілген түзу плиткаларды қимайды. Әрине плиткалардың қалай орналасқанына тікелей байланысты.
б) Жоғарыда көрсеткен дәлелдеуге сүйеніп 6*7 болатын тіктөртбұрыштың 21 плиткамен трансверсальды емес жабуы табылады деп айта аламын. 7 2ге қалдықсыз бөлінбейді . Яғни плиткалардың барлығын вертикаль қою қолдан келсе ал горизанталь қою мүмкін емес. Сәйкесінше, трансверсальды емес жабуы табылады.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.