Математикадан облыстық олимпиада, 2010-2011 оқу жылы, 11 сынып


$p$ жай сан болсын. Келесі екі шартты қанағаттандыратындай барлық реттелген $(a,b,c)$ үштіктерінің санын табыңыздар:
i) $a,b,c$ сандары $\lbrace1,2, \dots ,2p^2\rbrace$ жиынында жатады;
ii) $\dfrac{[a,c]+[b,c]}{a+b}=c \cdot \dfrac{p^2+1}{p^2+2} $, мұндағы $[x,y]$ — $x$ және $y$ сандарының ең кіші ортақ еселігі.
посмотреть в олимпиаде

Комментарий/решение:

  3
2016-11-17 18:59:56.0 #

Ответ :0

Решение. Пусть числа $ a, b, c $-попарно взаимнопросты. Тогда $[ a,c]=ac; [b,c]=bc $. То есть получается $\dfrac {ac+bc}{a+b}=c\dfrac {p^2+1}{p^2+2} $ ,эквивалентное $c\dfrac {a+b}{a+b}=c\dfrac {p^2+1}{p^2+2} $. Откуда $1=\dfrac {p^2+1}{p^2+2} $. Ни при каком действительном $p $ такое невозможно. Значит, среди чисел $ a, b, c $есть какие-то два (может быть три), имеющие общий множитель . Пусть у $a, b, c $ есть общий множитель $m $,то есть $a=mk;b=mn;c=mx $. Тогда $[a, c ]=mkx; [b, c ]=mnx $;получим $\dfrac {[a, c ]+[b, c ]}{a+b }=\dfrac {mx (k+n)}{m (k +n)}=x\in N $. С другой стороны это же выражение равно $c\dfrac {p^2+1}{p^2+2} $. Тогда $x=c\dfrac {p^2+1}{p^2+2} $ После преобразований $m=\dfrac {p^2+2}{p^2+1} $. Судя по записи, $m $-не целое. Но оно целое, так как является целым множителем чисел $a, b, c $. Таким образом, для чисел $a, b, c$, имеющих общий множитель, требуемых упорядоченных троек не найдется.

Осталось рассмотреть случай, когда два числа имеют общий множитель, а третье число взаимнопросто с первыми двумя. Тогда $a=mk ;b=mn; (a,b)=(c,b)=1$.

$$[a,c]=mkn; [b,c]=bmn $$. Получаем эквивалентные равенства $\dfrac {mkn+mbn}{mk +b}=c\dfrac {p^2+1}{p^2+2} $; $$\dfrac {k+b}{mk+b}=\dfrac {p^2+1}{p^2+2} $$. Умножить крайние и средние члены,приведем подобные,получим $k (p^2+2+mp^2-m)=-b $; $b\in [1;2p^2] $. Тогда $-b <0$. Так как $k>0,$ , то чтобы получилось произведение меньше нуля,скобка должна быть меньше нуля .но это не выполнимо, так как p>1 (так как p-простое )

пред. Правка 2   2
2016-11-18 20:28:20.0 #

А как же случай, когда у a и b общий множитель m1, у b и c общий множитель m2, (m1,m2)=1

Например числа 10,6,9

  4
2016-11-19 14:10:28.0 #

Согласен, есть недоработки. Но ваш пример $10,6,9$ не удовлетворяет условию, то есть при данных числах $p $ не то что не простое,но и не действительное. Я рассмотрю ваш случай. Пишите формулы и выражения, используя $$