22-я Международная Жаутыковская олимпиада по математике, 2026 год
Комментарий/решение:
Пусть $SM \cap BC=T$. Докажем что точки $K-H-T$ лежат на одной прямой. Рассмотрим поворотную гомотетию с центром в точке $S$ и переводящий точку $B'$ в точку $B$. Очевидно она переводит $C$ в $C'$. Докажем что $A$ переходит в $K$ или $\triangle SAK \sim \triangle SC'C$.
Док-во: $\angle SKA = \angle SCC'$ по вписанности $SAKC$. Из касания $\angle SAK = 180 - \angle SC'A=\angle SC'C$. из чего следует требуемое.
Теперь пусть точка $O$ переходит в $O'$. Понятно $O'K=O'S$ так как $OA=OS$ и $O' \in BC$ из $O \in B'C'$. Теперь пусть $\angle STO'=\alpha=\angle BTM$. Тогда из $AM \bot BC$ следует $\angle AMS=90-\alpha$. Значит $\angle SOA=2\angle SMA=180-2\alpha=\angle SO'K$. Или $\angle SKO'=\angle KSO'=\alpha$. Значит $SKTO'$ вписан. Но из $SO'=O'K$ следует $\angle KTB = \angle BTM=\angle HTM$, то есть $K, H, T$ на одной прямой, ч.т.д.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.