Областная олимпиада по математике, 2007 год, 10 класс
Пусть $n$ — натуральное число, $p$ — простое, причем $(n+1)^p-n^p$ делится на некоторое натуральное число $q$. Докажите, что $(q-1)$ делится на $p$.
посмотреть в олимпиаде
Комментарий/решение:
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.