Олимпиада имени Леонарда Эйлера 2022-2023 учебный год, II тур дистанционного этапа
$BM$ — сүйірбұрышты $ABC$ үшбұрышының медианасы. $C$ бұрышының биссектрисасы $A$ нүктесі арқылы өтетін және $BC$-ға параллель түзуді $X$ нүктесінде қияды. Егер $BM = MX$ болса, $BC > AC$ екенін дәлелдеңіз.
(
С. Берлов
)
посмотреть в олимпиаде
Комментарий/решение:
Комментарии от администратора Комментарии от администратора №1.
Решение. Проведем в треугольнике $ABC$ высоту $AH$. Утверждение задачи немедленно вытекает из равенства $AC = BH$, которое мы и будем доказывать. Проведем медиану $MD$ равнобедренного треугольника $BMX$. Она является средней линией трапеции (или параллелограмма) $AXBC$, и потому параллельна прямым $BC$ и $AX$. Так как эта медиана является в $BMX$ также и высотой, прямая $BX$ перпендикулярна ей, а потому и прямым $BC$ и $AX$. Следовательно, $BXAH$ — прямоугольник, откуда $BH = AX$. С другой стороны, $\angle CXA = \angle XCB = \angle XCA$, откуда $AC = AX = BH$, что нам и требовалось.
Возможно, что при неправильном наборе формул, они будут
доредактированы модератором. При этом содержание не будет меняться.