Processing math: 100%

Республиканская юниорская олимпиада по математике. Областной этап. 2017-2018 учебный год


ABCD квадратында K және M нүктелері сәйкесінше AB және CD қабырғаларының орталары. N — нүктесі BC қабырғасының бойындағы нүкте. E нүктесі NK және AD түзулерінің қиылысу нүктесі. EMN=90 болса BKN=60 екенін дәлелдеңіз. Және де кері тұжырымды дәлелдеңіз: егер BKN=60 болса онда EMN=90 болатынын.
посмотреть в олимпиаде

Комментарий/решение:

пред. Правка 2   3
1 года 6 месяца назад #

Решение: Пусть BKN=60, тогда пусть BK=a=KA=CM=MD. Отсюда, KN=KE=2a, по теореме Пифагора и потому что BNEA а также BK=KA, и все вместе по равенству треугольников выйдет что KN=KE. Теперь продлим NM до пересечения с AD в точке X. Выйдет что также NM=MX, а также DX=NC. А значит, NC+BN=EA+DX=2a, отсюда EN=EX а EM - медиана, которая и высота в равнобедренном треугольнике что означает что NME равен 90 градусов.

Теперь если изначально NME равен 90 градусов, то опять продлим NM до пересечения с AD в точке X и получим что NC+BN=EA+DX=2a а также NM=MX а значит что EN=EX, а отсюда EX=2a+2a=4a, и EK=KN=2a. Тогда так как BNK прямоугольный то BKN=60, из за BK=a,KN=2a. Доказано