Республиканская олимпиада по математике, 2022 год, 1 класс


В остроугольном треугольнике $ABC$ провели высоты $AD,$ $BE$ и $CF.$ $P$ и $Q$ лежат на отрезках $AB$ и $AC$ соответственно так, что прямая $PQ$ параллельна $BC$. Окружности построенные на $BQ$ и $CP$, как на диаметрах, пересекаются в точках $R$ и $T$ ($R$ является ближе к $A$ чем $T$). Пусть $CM$ и $BN$ — высоты в треугольнике $BCR$. Докажите, что прямые $FM,$ $NE$ и $AD$ пересекаются в одной точке. ( Шынтас Н. )
посмотреть в олимпиаде

Комментарий/решение:

пред. Правка 2   1
2023-02-11 23:37:31.0 #

хорошая задача